Create a program that will approximate the error function erf(x) and erfc(x). Use the following Taylor series expansion:

Restrictions: 1. Use at most 6 variables in the main function. 2. Create a separate function for factorial using iteration. 3. Create a separate function for power using recursion. 4. Calculate the approximation until the 100th term of the Taylor series and print out approximation up to 4 decimal places. *I have accomplished numbers 2 and 3. 2.) int power(int b, int e){ if(b==0 && e==0){ printf("Invalid.\n"); main(); } if(e==1){ return b; } if(e==0){ return 1; } else{ return b*power(b,e-1); } } 3.) double factorial(double value){ int ctr; double fact; if(fact<0){ printf("Invalid.\n"); main(); } else{ fact=1; for(ctr=1;ctr<=value;ctr++){ fact*=ctr; } return fact; } } ***Any help will be appreciated. Thanks!

Can someone post a C++ program code on how to implement an approximation of taylor series expansion of sin(pi/2) and cos(pi/2) with epsilon sub s conforming to 4 significant figures? This is urgent. I humbly beg for your kind souls. Please help me on this..Please..much thanks in advance!